Analisis Komparatif Antara Pendekatan Top Down dan Bottom Up Dalam Perencanaan Pendidikan
DOI:
https://doi.org/10.31004/w1nf5b88Keywords:
Perencanaan Pendidikan, Pendekatan Top-Down, Pendekatan Bottom-UpAbstract
Penelitian ini bertujuan untuk menganalisis secara komparatif penerapan pendekatan top-down dan bottom-up dalam perencanaan pendidikan. Melalui metode library research, penelitian ini menelaah berbagai sumber ilmiah dari jurnal internasional, buku akademik, dan laporan kebijakan pendidikan yang relevan. Hasil analisis menunjukkan bahwa pendekatan top-down efektif dalam menjaga keseragaman kebijakan nasional, efisiensi implementasi program, serta pengendalian mutu pendidikan secara sistemik. Namun, pendekatan ini sering kali kurang responsif terhadap kebutuhan dan karakteristik lokal. Sebaliknya, pendekatan bottom-up memberikan ruang bagi partisipasi masyarakat, kreativitas lokal, dan inovasi kebijakan berbasis konteks daerah, meskipun berisiko menghadapi kendala koordinasi dan kesenjangan antarwilayah. Penelitian ini menegaskan pentingnya integrasi kedua pendekatan tersebut untuk menciptakan model perencanaan pendidikan yang adaptif, kolaboratif, dan berkelanjutan. Integrasi ini diharapkan mampu memperkuat hubungan antara kebijakan nasional dan praktik lokal, sekaligus meningkatkan efektivitas pembangunan pendidikan di era desentralisasi
References
Approaches of educational planning. (2022). PrepWithHarshita. Retrieved from https://prepwithharshita.com/approaches-of-educational-planning/.
Abdullah, A. H., Abidin, N. L. Z., & Ali, M. (2015). Analysis of students’ errors in solving Higher Order Thinking Skills (HOTS) problems for the topic of fraction. Asian Social Science, 11(21), 133–142. https://doi.org/10.5539/ass.v11n21p133.
Ali, F. A., Murni, V., & Jelatu, S. (2018). Analisis Kesulitan Mahasiswa Dalam Menyelesaikan Masalah Matematis Bermuatan HOTS Ditinjau Dari Kemampuan Koneksi Matematis. Journal of Songke Math, 1(2), 32–46.
Asmar, A. (2017). Analysis of Student Difficulties In Solving Problems of Analytical Geometryin Parabolic And Hiperbolic Materials. In Proceeding International Conference on Mathematics and Mathematics Education (Issue August).
Chapman, D. W., & Lussier, K. (2021). Education planning in a decentralized context: Balancing central control and local participation. International Journal of Educational Development, 84, 102435.
Indriyani, I., & Putra, F. G. (2018). Media Pembelajaran Berbantuan Sparkol Materi Program Linier Metode Simpleks. Desimal: Jurnal Matematika, 1(3), 353–362. https://doi.org/10.24042/djm.v1i3.3008.
Li, Y., & Chen, J. (2022). Bridging national policy and local practice: The dynamics of educational planning reform in China. Educational Management Administration & Leadership, 50(7), 1189–1208.
Martínez, M., & Gairín, J. (2020). Community-based innovation in educational planning: Lessons from local participation in Spain. Journal of Educational Change, 21(4), 567–586.
Rahman, T., & Yusuf, M. (2022). Rethinking education planning: Decentralization and stakeholder engagement in developing contexts. International Review of Education, 68(4), 551–569.
Syahruddin, & Bisri, M. (2019). The top-down and bottom-up models in educational innovation. Formosa Journal of Science and Technology, 3(6), 1271–1282
Sarvita, L., & Syarifuddin, H. (2020). The developed hypothetical learning trajectory for integral topic based on realistic mathematics education. Journal of Physics: Conference Series, 1554(1). https://doi.org/10.1088/1742-6596/1554/1/012032.
Syafriandi, S., Fauzan, A., Lufri, L., & Armiati, A. (2020). Designing hypothetical learning trajectory for learning the importance of hypothesis testing. Journal of Physics: Conference Series, 1554(1). https://doi.org/10.1088/1742-6596/1554/1/012045.
Park, H., & Kim, S. (2024). Balancing authority and autonomy: A comparative study of educational planning approaches in South Korea. Asia Pacific Education Review, 25(2), 233–249.
Patel, R., & Singh, A. (2023). Integrating top-down and bottom-up approaches in educational reform: Insights from India’s policy implementation. Compare: A Journal of Comparative and International Education, 53(5), 821–838.
Yarman, Fauzan, A., Armiati, & Lufri. (2020). Hypothetical Learning Trajectory for First-Order Ordinary Differential Equations. 504(ICoIE), 337–341. https://doi.org/10.2991/assehr.k.201209.245
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Raisha Fasya Sahila, Asmendri Asmendri, Mila Sari, Fairis Tifa Nafisa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












